Skip to content

On Snake-Poison: its Action and its Antidote By Mueller Pdf

  • by
On Snake-Poison: its Action and its Antidote By Mueller Pdf
On Snake-Poison: its Action and its Antidote By Mueller Pdf

Here you can download On Snake-Poison: its Action and its Antidote By Mueller Pdf book free online – from On Snake-Poison: its Action and its Antidote By Mueller Pdf book; The poison gland of snakes is the analogue of the parotid gland of mammals, both in position and structure.

Its acini or alveoli are lined with a layer of secretory, columnar, finely granular cells and arranged with great regularity along the excretory duct, which is straight and cylindrical and opens with vipers into the hollow poison fang, with our colubrines into the groove on the anterior surface of it. Snake-poison, as it leaves this gland, is a thin, albuminoid, yellow liquid of neutral reaction. On exposure to the air it becomes viscid and slightly acid. Of its chemical composition we know as yet but little, and it is very questionable whether the most perfect chemical analysis of its constituents would ever have given us a clue to its action or will enrich our present knowledge of it.

The microscope has done good service in the investigation of snake-poison. It has, in the first place, informed us with absolute certainty that there are no micro-organisms or germs of any kind in the fresh poison immediately after it leaves the gland. But a still more important revelation we owe to it is the fact that these organisms, when we introduce them into a 2% solution of the poison, do not die, but live, multiply, and enjoy their existence most lustily, as they do in any other non-poisonous albuminoid liquid, whilst animals of a higher type—say a snail or a frog—soon perish in it. In watching the movements of the latter we find that they get slower and slower, and finally cease. We now follow up the interesting research, and take two frogs.

Under the skin of one of them we inject a few drops of the poison solution, the other one for comparison we leave intact, and place both into a glass globe partly filled with water. In a very short time we have no difficulty to identify the poisoned frog. Its hind legs begin to drop and their movements become sluggish. This difficulty increases from minute to minute, until at last all motion ceases, and the legs hang down completely paralysed. At the same time we observe that the animal shows increasing difficulty of breathing, that, even when taken out of the water, and placed on the table before us it gasps for breath and is unable to move. At last respiration ceases altogether and the frog dies.

Leave a Reply

Your email address will not be published. Required fields are marked *